Training @ Lu Lab
Lu Lab Docs
  • Home
    • Training @ Lu Lab
  • Drylab Training
    • Genomics
      • RNA Types in Genome
  • Wetlab Training
    • Wetlab Safety Guide
    • Wetlab FAQ
  • Archive
    • Archive 2021
      • cfDNA Methylation
      • Genomic Annotation
    • Archive 2019 - Wetlab Training
      • Class I. Basics
        • 1. Wet Lab Safety
        • 2. Wet Lab Regulation
        • 3. Wet Lab Protocols
        • 4. How to design sample cohort
        • 5. How to collect and manage samples
        • 6. How to purify RNA from blood
        • 7. How to check the quantity and quality of RNA
        • 8. RNA storage
        • 9. How to remove DNA contanimation
        • 10. What is Spike-in
      • Class II. NGS - I
        • 1. How to do RNA-seq
        • 2. How to check the quantity and quality of RNA-seq library
        • 3. What is SMART-seq2 and Multiplex
    • Archive 2019 - Drylab Training
      • Getting Startted
      • Part I. Programming Skills
        • Introduction of PART I
        • 1.Setup
        • 2.Linux
        • 3.Bash and Github
        • 4.R
        • 5.Python
        • 6.Perl
        • Conclusion of PART I
      • Part II. Machine Learning Skills
        • 1.Machine Learning
        • 2.Feature Selection
        • 3.Machine Learning Practice
        • 4.Deep Learning
      • Part III. Case studies
        • Case Study 1. exRNA-seq
          • 1.1 Mapping, Annotation and QC
          • 1.2 Expression Matrix
          • 1.3.Differential Expression
          • 1.4 Normalization Issues
        • Case Study 2. exSEEK
          • 2.1 Plot Utilities
          • 2.2 Matrix Processing
          • 2.3 Feature Selection
        • Case Study 3. DeepSHAPE
          • 3.1 Background
          • 3.2 Resources
          • 3.3 Literature
      • Part IV. Appendix
        • Appendix I. Keep Learning
        • Appendix II. Public Data
        • Appendix III. Mapping Protocol of RNA-seq
        • Appendix IV. Useful tools for bioinformatics
      • Part V. Software
        • I. Docker Manual
        • II. Local Gitbook Builder
        • III. Teaching Materials
  • Archive 2018
Powered by GitBook
On this page
  • Predict structure probing data
  • Structure probing
  • Analysis
  • RNA structure motif discovery
  • Deep learning for motif discovery
Edit on GitHub
  1. Archive
  2. Archive 2019 - Drylab Training
  3. Part III. Case studies
  4. Case Study 3. DeepSHAPE

3.3 Literature

Predict structure probing data

  • Delli Ponti, R., Marti, S., Armaos, A., and Tartaglia, G.G. (2016). A high-throughput approach to profile RNA structure. Nucl. Acids Res. gkw1094.

Structure probing

  • icSHAPE (mouse): Spitale, R.C., Flynn, R.A., Zhang, Q.C., Crisalli, P., Lee, B., Jung, J.-W., Kuchelmeister, H.Y., Batista, P.J., Torre, E.A., Kool, E.T., et al. (2015). Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490.

  • icSHAPE and PARIS (human): Lu, Z., Zhang, Q.C., Lee, B., Flynn, R.A., Smith, M.A., Robinson, J.T., Davidovich, C., Gooding, A.R., Goodrich, K.J., Mattick, J.S., et al. (2016). RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure. Cell 165, 1267–1279.

  • COMARDES: Ziv, O., Gabryelska, M.M., Lun, A.T.L., Gebert, L.F.R., Sheu-Gruttadauria, J., Meredith, L.W., Liu, Z.-Y., Kwok, C.K., Qin, C.-F., MacRae, I.J., et al. (2018). COMRADES determines in vivo RNA structures and interactions. Nature Methods 1.

  • SHAPE-MaP (E. coli): Mustoe, A.M., Busan, S., Rice, G.M., Hajdin, C.E., Peterson, B.K., Ruda, V.M., Kubica, N., Nutiu, R., Baryza, J.L., and Weeks, K.M. (2018). Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing. Cell 173, 181-195.e18.

  • SHAPE-MaP (canonical ncRNA): Siegfried, N.A., Busan, S., Rice, G.M., Nelson, J.A.E., and Weeks, K.M. (2014). RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat Meth 11, 959–965.

  • DMS-seq (human): Rouskin, S., Zubradt, M., Washietl, S., Kellis, M., and Weissman, J.S. (2014). Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505, 701–705.

  • PARS (human): Wan, Y., Qu, K., Zhang, Q.C., Flynn, R.A., Manor, O., Ouyang, Z., Zhang, J., Spitale, R.C., Snyder, M.P., Segal, E., et al. (2014). Landscape and variation of RNA secondary structure across the human transcriptome. Nature 505, 706–709.

  • Mutate-and-map (canonical ncRNA): Kladwang, W., VanLang, C.C., Cordero, P., and Das, R. (2011). A two-dimensional mutate-and-map strategy for non-coding RNA structure. Nat Chem 3, 954–962.

  • DMS and translation (E. coli): Zhang, Y., Burkhardt, D.H., Rouskin, S., Li, G.-W., Weissman, J.S., and Gross, C.A. (2018). A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation. Molecular Cell 70, 274-286.e7.

  • DMS-MaPseq (yeast and human): Zubradt, M., Gupta, P., Persad, S., Lambowitz, A.M., Weissman, J.S., and Rouskin, S. (2017). DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nature Methods 14, 75–82.

  • Structure probing in vivo (Review): Spitale, R.C., Crisalli, P., Flynn, R.A., Torre, E.A., Kool, E.T., and Chang, H.Y. (2013). RNA SHAPE analysis in living cells. Nat Chem Biol 9, 18–20.

  • Structure probing and RNA modification (Review): Incarnato, D., and Oliviero, S. (2017). The RNA Epistructurome: Uncovering RNA Function by Studying Structure and Post-Transcriptional Modifications. Trends in Biotechnology 35, 318–333.

  • RNAex (database): Wu, Y., Qu, R., Huang, Y., Shi, B., Liu, M., Li, Y., and Lu, Z.J. (2016). RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data. Nucleic Acids Res 44, W294–W301.

  • RISE (database): Gong, J., Shao, D., Xu, K., Lu, Z., Lu, Z.J., Yang, Y.T., and Zhang, Q.C. RISE: a database of RNA interactome from sequencing experiments. Nucleic Acids Res.

Analysis

  • Differential SHAPE: Choudhary, K., Lai, Y.-H., Tran, E.J., and Aviran, S. (2019). dStruct: identifying differentially reactive regions from RNA structurome profiling data. Genome Biology 20, 40.

  • Alternative structure: Li, H., and Aviran, S. (2018). Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes. Nature Communications 9, 606.

  • Inference from structure probing data: Selega, A., Sirocchi, C., Iosub, I., Granneman, S., and Sanguinetti, G. (2017). Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments. Nat Meth 14, 83–89.

RNA structure motif discovery

  • Motif search in structure probing data: Ledda, M., and Aviran, S. (2018). PATTERNA: transcriptome-wide search for functional RNA elements via structural data signatures. Genome Biology 19, 28.

  • patteRNA improved version: Radecki, P., Ledda, M., and Aviran, S. (2018). Automated Recognition of RNA Structure Motifs by Their SHAPE Data Signatures. Genes 9, 300.

  • Structure alignment: Smith, M.A., Seemann, S.E., Quek, X.C., and Mattick, J.S. (2017). DotAligner: identification and clustering of RNA structure motifs. Genome Biology 18, 244.

  • Motif discovery for RBP (Review): Sasse, A., Laverty, K.U., Hughes, T.R., and Morris, Q.D. (2018). Motif models for RNA-binding proteins. Current Opinion in Structural Biology 53, 115–123.

  • Motif discovery (Review): Achar, A., and Sætrom, P. (2015). RNA motif discovery: a computational overview. Biology Direct 10, 61.

Deep learning for motif discovery

  • RNA-protein, DNA-protein (DeepBind): Alipanahi, B., Delong, A., Weirauch, M.T., and Frey, B.J. (2015). Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning. Nat Biotech advance online publication.

  • DNA accessibility (Basset): Kelley, D.R., Snoek, J., and Rinn, J.L. (2016). Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res.

  • RNA-protein (iDeep): Pan, X., and Shen, H.-B. (2017). RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinformatics 18, 136.

  • Regulatory activity: Kelley, D.R., Reshef, Y.A., Bileschi, M., Belanger, D., McLean, C.Y., and Snoek, J. (2018). Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome Res. 28, 739–750.

Last updated 3 years ago