Training @ Lu Lab
Lu Lab Docs
  • Home
    • Training @ Lu Lab
  • Drylab Training
    • Genomics
      • RNA Types in Genome
  • Wetlab Training
    • Wetlab Safety Guide
    • Wetlab FAQ
  • Archive
    • Archive 2021
      • cfDNA Methylation
      • Genomic Annotation
    • Archive 2019 - Wetlab Training
      • Class I. Basics
        • 1. Wet Lab Safety
        • 2. Wet Lab Regulation
        • 3. Wet Lab Protocols
        • 4. How to design sample cohort
        • 5. How to collect and manage samples
        • 6. How to purify RNA from blood
        • 7. How to check the quantity and quality of RNA
        • 8. RNA storage
        • 9. How to remove DNA contanimation
        • 10. What is Spike-in
      • Class II. NGS - I
        • 1. How to do RNA-seq
        • 2. How to check the quantity and quality of RNA-seq library
        • 3. What is SMART-seq2 and Multiplex
    • Archive 2019 - Drylab Training
      • Getting Startted
      • Part I. Programming Skills
        • Introduction of PART I
        • 1.Setup
        • 2.Linux
        • 3.Bash and Github
        • 4.R
        • 5.Python
        • 6.Perl
        • Conclusion of PART I
      • Part II. Machine Learning Skills
        • 1.Machine Learning
        • 2.Feature Selection
        • 3.Machine Learning Practice
        • 4.Deep Learning
      • Part III. Case studies
        • Case Study 1. exRNA-seq
          • 1.1 Mapping, Annotation and QC
          • 1.2 Expression Matrix
          • 1.3.Differential Expression
          • 1.4 Normalization Issues
        • Case Study 2. exSEEK
          • 2.1 Plot Utilities
          • 2.2 Matrix Processing
          • 2.3 Feature Selection
        • Case Study 3. DeepSHAPE
          • 3.1 Background
          • 3.2 Resources
          • 3.3 Literature
      • Part IV. Appendix
        • Appendix I. Keep Learning
        • Appendix II. Public Data
        • Appendix III. Mapping Protocol of RNA-seq
        • Appendix IV. Useful tools for bioinformatics
      • Part V. Software
        • I. Docker Manual
        • II. Local Gitbook Builder
        • III. Teaching Materials
  • Archive 2018
Powered by GitBook
On this page
  • 推荐书单和课程
  • I. Recommended Books
  • II. Recommended on-line Courses
  • III. Recommended Educational Papers
  • 机器学习相关书单和课程推荐
  • I. 书单
  • II. 在线教学课程和视频
Edit on GitHub
  1. Archive
  2. Archive 2019 - Drylab Training
  3. Part IV. Appendix

Appendix I. Keep Learning

Last updated 3 years ago

推荐书单和课程

⭐: 必读 ✨: 推荐

I. Recommended Books

实践:

  • ⭐《》by Vince Buffalo

理论:

  1. ⭐《:Probabilistic Models of Proteins and Nucleic Acids》 ( | ) by Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison

  2. ⭐ -- 周志华

II. Recommended on-line Courses

  • ⭐Machine Learning by Andrew Ng 吴恩达 (CS229): @ | @ | @

III. Recommended Educational Papers

  • ✨ by Nature Biotech. and PLOS Computational Biology (@)

  • ✨ by Nature

机器学习相关书单和课程推荐

edited based on Xiaofan Liu's list

I. 书单

  1. 数学基础 (建议根据自己的基础进行复习)

    1. 《高等数学》

    2. 《线性代数》

    3. 《数理统计与概率论》

  2. 入门书籍 (其中1、2可选一本精读,数学基础好的推荐选2)

    1. 《机器学习》,周志华著 (★★★★★推荐)

    2. 《统计学习方法》,李航著 (★★★★推荐)

    3. 《多元统计分析》,何晓群著

  3. Python编程书籍

    1. 《Python机器学习基础教程》,[德]安德里亚斯·穆勒(Andreas C.Müller,[美]莎拉·吉多(Sarah Guido)著,张亮(hysic)译 (★★★★推荐)

    2. 《python高性能编程》,Micha,Gorelick,戈雷利克,Ian,Ozsvald ...著

  4. 深度学习类书籍 (希望加强对模型数学原理的理解,并且进一步学习深度学习的同学可选读)

    1. 《深度学习[deep learning]》,[美] Ian,Goodfellow,[加] Yoshua,Bengio,[加] Aaron ... 著(★★★★推荐)

    2. 《模式识别与机器学习(Pattern Recognition and Machine Learning)》,Christopher M. Bishop著

    3. 《机器学习:从概率的视角分析(The Machine Learning: A Probabilistic Perspective)》,Kevin P. Murphy著

    注:PRML和MLAPP两本书难度较大

  5. 深度学习编程与实践书籍 (工具类书籍,不是必读) 1. 《Keras深度学习实战》,[意大利]安东尼奥·古利[印度]苏伊特·帕尔著,王海玲李昉译,于立国审 2. 《深度学习入门之PyTorch》,廖星宇著 3. 《深度学习框架PyTorch快速开发与实战》,邢梦来,王硕,孙洋洋著 4. 《TensorFlow实战》,黄文坚,唐源著

II. 在线教学课程和视频

  1. 机器学习入门课程

  2. 深度学习课程

(根据自己基础选择复习)

Machine Learning by Andrew Ng 吴恩达 (CS229): @ | @ | @ (★★★★★推荐)

Deep Learning by Andrew Ng 吴恩达 (CS230): @ | @ (★★★★推荐)

(★★★★推荐)

📖
📑
Bioinformatics Data Skills
Biological Sequence Analysis
English
中文
《机器学习》
coursera
网易
bilibili
Educational Papers
evernote
Statistics for biologist
浙江大学公开课:概率论与数理统计
coursera
网易
bilibili
coursera
bilibili
Keras快速搭建神经网络
李宏毅深度学习2017
不用博士学位玩转Tensorflow深度学习